• About
  • Privacy Policy
  • Disclaimer
  • Contact

MATSAMUKA

  • DROPDOWN MENU
  • About
  • Sitemap
  • Labels
    • Bisnis Online
    • Media Sosial
    • Ragam
    • Software
    • Blogging
  • Blog Bisnis
  • Links
    • Download Video
    • Adw Cleaner
    • Malware Byte
Home » Math » Two congruent plane figures: exercise 1

Two congruent plane figures: exercise 1

Label: Math

Catatan ke-6


A. Exercise
Consider the plane figures below, show the couples of the congruent figures?


Answer:
  • First to all, I have to know the requirements for the congruence of two plane figures. That are:
    • The corresponding lengths are equal; and
    • The corresponding angles are similar.
  • Second, in every tip of the quadrilaterals, I give a letter. Thus, I get the rectangle ABCD, the rectangle PQRS, and the rectangle WXYZ.

  • Third, solution for the rectangle ABCD and PQRS.
    • The followings are the size of corresponding angles:
      • ∠ABC corresponds with ∠PQR, then ∠ABC = ∠PQR = 1000
      • ∠BCD corresponds with ∠QRS, then ∠BCD = ∠QRS = 800
      • ∠CDA corresponds with ∠RSP, then ∠CDA = ∠RSP = 1000
      • ∠DAB corresponds with ∠SPQ, then ∠DAB = ∠SPQ = 800
      • Thus, the corresponding angles has the similar size. It's mean, one requirement is fulfilled.
    • The followings are the length of corresponding sides:
      • AB corresponds with QR, then AB = QR
      • BC corresponds with RS, but BC ≠ RS
      • CD corresponds with SP, then CD = SP
      • DA corresponds with PQ, but DA ≠ PQ
      • I got the corresponding sides has two similar length and two different length. Hence, one requirement is not fulfilled.

  • Fourth, solution for the rectangle ABCD and WXYZ.
    • The followings are the size of corresponding angles:
      • ∠ABC corresponds with ∠XYZ, then ∠ABC = ∠XYZ = 1000
      • ∠BCD corresponds with ∠YZW, then ∠BCD = ∠YZW = 800
      • ∠CDA corresponds with ∠ZWX, then ∠CDA = ∠ZWX = 1000
      • ∠DAB corresponds with ∠WXY,then ∠DAB = ∠WXY= 800
      • The corresponding angles have the same sizes. It's mean, one requirement is fulfilled.
    • The followings are the length of corresponding sides:
      • AB corresponds with XY, then AB = XY
      • BC corresponds with YZ, then BC = YZ
      • CD corresponds with ZW, then CD = ZW
      • DA corresponds with WX, then DA = WX
      • The result, I got corresponding sides are also similar. One requirement is fulfilled. 

  • Fifth, solution for the rectangle PQRS and WXYZ.
    • The followings are the size of corresponding angles:
      • ∠PQRcorresponds with ∠XYZ, then∠PQR= ∠XYZ = 1000
      • ∠QRScorresponds with ∠YZW, then∠QRS= ∠YZW = 800
      • ∠RSPcorresponds with ∠ZWX, then ∠RSP= ∠ZWX = 1000
      • ∠SPQcorresponds with ∠WXY, then ∠SPQ = ∠WXY = 800
      • The corresponding angles has similar sizes. It's mean, one requirement is fulfilled.
    • The followings are the length of corresponding sides:
      • PQcorresponds with WX, but PQ ≠ WX.
      • QRcorresponds with XY, then QR = XY.
      • RScorresponds with YZ, but RS ≠ YZ.
      • SPcorresponds with ZW, thenSP = ZW.
      • I got two similar sizes and two different sizes. Thus, one requirement is not fulfilled. 

  • Based on the description above, I can conclude as follow:
    • The rectangle ABCD is not congruent with the rectangle PQRS because one of requirement is not fulfilled, that is the corresponding sides is not equal in size (BC ≠ RS and DA ≠ PQ).
    • The rectangle PQRS is not congruent with the rectangle WXYZ because one of requirements is not fulfilled, that is the corresponding sides is not equal in size (PQ ≠ WX and RS≠ YZ).
    • If two requirements for the congruence of two plane figures are fulfilled, thus the rectangle ABCD and the rectangle WXYZ are congruent.
  
Happy blogging!

Ibnu Kahfi

Related Articles:
Mathematics
  • The Congruence of Two Plane Figures.
  • How to Determine the Length of Sides and the Size of Angles.
  • Two Congruent Plane Figures: Exercise 2.
  • Two Congruent Plane Figures: Exercise 3.
  • Two Congruent Plane Figures: Exercise4.

My blog:
  1. tulisankahfi.blogspot.com
  2. catatanpelajaransekolah.blogspot.com
  3. catatanpelajaraninggris.blogspot.com

0 Response to "Two congruent plane figures: exercise 1"

← Posting Lebih Baru Posting Lama → Beranda
Langganan: Posting Komentar (Atom)

Entri Populer

  • Soal Geografi Materi Biosfer
    1. Fauna wilayah Indonesia Bagian Barat termasuk fauna tipe.... A. Australis B. Panama C. Ethiopian D. Oriental E. Paleartik 2. Di daratan A...
  • Bentuk-bentuk Morfologi Dasar Laut
    Bentuk dasar laut tak ubahnya seperti bentukan yang ditemukan di darat, seperti dataran rendah dan tinggi, pegunungan, lembah, dan sebagainy...
  • SOAL HOTS GEOGRAFI
    Pembelajaran harus HOTS, soal wajib HOTS dan semuanya terkait HOTS. Guru dan siswa jadi bingung. Sebenarnya, apa, bagaimana, dan manfaat HOT...
  • Kecepatan angin
    Atmosfer ikut berotasi dengan bumi. Molekul-molekul udara mempunyai kecepatan gerak ke arah timur, sesuai dengan arah rotasi bumi. Kecepatan...
  • SMAN 15 MEDAN JUARA OLIMPIADE GEOGRAFI UNIMED TINGKAT SUMUT-ACEH TAHUN 2016
    Bersyukur kepada Allah SWT karena kebahagian siswa/i yang tergabung pada tim Olimpiade Sains SMA Negeri 15 Medan (OS 15) Bidang Geografi sa...
  • Soal Tentang Garis Kontur, Komponen Inderaja, dan Tahapan Kerja SIG
    1.   Diketahui peta kontur dengan skala 1:20.000.  Pertanyaan : Berapakah kontur interval pada peta tersebut? Apabila ada dua garis kontur y...
  • Persebaran Flora di Indonesia
    Mungkin diantara kita masih belum mendapatkan gambaran -seperti apa sih persebaran flora di Indonesia?-. Seorang ahli biologi asal Belanda –...
  • Industri, Orientasi Lokasi, dan Klasifikasinya
    Pengertian Industri  adalah bidang yang menggunakan ketrampilan, dan ketekunan kerja (bahasa Inggris:  industrious ) dan penggunaan alat-ala...
  • Memperbesar dan Memperkecil Peta
    Selain mencari cara menghitung skala peta, biasanya kita juga diminta untuk memperbesar maupun memperkecil suatu peta. Gambaran pada peta bi...
  • Persebaran Fauna di Dunia
    Wilayah persebaran fauna pertama kali diperkenalkan oleh Sclater (1858) dan kemudian dikembangkan oleh Huxley (1868) dan Wallace (1876). Ada...

Arsip Blog

Formulir Kontak

Nama

Email *

Pesan *

Memuat...

Memuat...

Memuat...

Memuat...
Copyright 2014 MATSAMUKA. All Rights Reserved. Template by CB Blogger. Original Theme by Mas Sugeng. Powered by Blogger