• About
  • Privacy Policy
  • Disclaimer
  • Contact

MATSAMUKA

  • DROPDOWN MENU
  • About
  • Sitemap
  • Labels
    • Bisnis Online
    • Media Sosial
    • Ragam
    • Software
    • Blogging
  • Blog Bisnis
  • Links
    • Download Video
    • Adw Cleaner
    • Malware Byte
Home » Math » Two congruent plane figures: exercise 2

Two congruent plane figures: exercise 2

Label: Math

Catatan ke-8


Exercise
Consider the plane figures below! Show the couples of the congruent figures? Explain step by step the answer.



Answer:
  • First of all, I must to know the requirements for the congruence of two plane figures. That are:
    • The corresponding lengths are equal; and
    • The corresponding angles are similar.
  • Second, in every tip of the trapezoids, I give a letter. Then I will get trapezoid ABCD, trapezoid EFGH, and trapezoid WXYZ. 

  • Fourth, solution for the trapezoid ABCD and EFGH
    • The followings are the size of corresponding angles:
      • ∠ABC corresponds with ∠FGH, then ∠ABC = ∠FGH
      • ∠BCD corresponds with ∠EFG, then ∠BCD = ∠EFG = x
      • ∠CDA corresponds with ∠HEF, then ∠CDA = ∠HEF = y
      • ∠DAB corresponds with ∠GHE, then ∠DAB = ∠GHE
      • The corresponding angles have similar sizes. It's mean, one requirement is fulfilled.
    • The followings are the length of corresponding sides:
      • AB corresponds with GH, then AB = GH
      • BC corresponds with FG, then BC = FG
      • CD corresponds with EF, then CD = EF
      • DA corresponds with PQ, then DA = HE
      • I got that the length of the corresponding sides have similar sizes. Hence, one requirement is fulfilled. 

  • Fifth, solution for the trapezoid ABCD and IJKL
    • The followings are the size of corresponding angles:
      • ∠ABC corresponds with ∠JKL, then ∠ABC = ∠JKL
      • ∠BCD  correspondswith ∠IJK, then ∠BCD = ∠IJK = x
      • ∠CDA corresponds with ∠LIJ, then∠CDA = ∠LIJ = y
      • ∠DAB corresponds with ∠KLI, then ∠DAB = ∠KLI
      • The corresponding angles have similar sizes. It's mean, one requirement is fulfilled.
    • The followings are the length of corresponding sides:
      • AB corresponds with KL, but AB ≠ KL
      • BC corresponds with JK, but BC ≠ JK
      • CD corresponds with IJ, but CD ≠ IJ
      • DA corresponds with LI, but DA ≠ LI
      • The result, I got that the length of the corresponding sides are not similar. Hence, one requirement is not fulfilled. 

  • Sixth, solution for the trapezoid EFGH and IJKL
    • The followings are the size of corresponding angles:
      • ∠EFG corresponds with ∠IJK, then ∠EFG = ∠IJK = x
      • ∠FGH corresponds with ∠JKL, then ∠FGH = ∠JKL
      • ∠GHE corresponds with ∠KLI, then ∠GHE = ∠KLI
      • ∠HEF corresponds with ∠LIJ, then ∠HEF = ∠LIJ =  y
      • The corresponding angles have similar sizes. It's mean, one requirement is fulfilled.
    • The followings are the length of corresponding sides:
      • EFcorresponds with IJ, but EF ≠ IJ
      • FGcorresponds with JK, but FG ≠ JK
      • GHcorresponds with KL, but GH ≠ KL
      • HEcorresponds with LI, but HE ≠ LI
      • The length of the corresponding sides has different sizes. Hence, one requirement is not fulfilled. 

  • Based on the description above I can conclude as follow:
    • The trapezoid ABCD is congruent with the trapezoid EFGH, because two requirements for the congruence of two plane figures are fulfilled.
    • The trapezoid ABCD is not congruent with the trapezoid IJKL because one of requirement is not fulfilled, that is the corresponding sides is not in equal size (AB ≠ KL, BC≠ JK, CD ≠ IJ, and DA ≠ LI).
    • The trapezoid EFGH is not congruent with the trapezoid IJKL because one of requirement is not fulfilled, that is the corresponding sides is not in equal size (GH ≠ KL, FG ≠ JK, EF ≠ IJ, and HE ≠ LI).


Happy blogging!

Ibnu Kahfi

Related Articles:
Mathematics
  • The Congruence of Two Plane Figures.
  • How to Determine the Length of Sides and the Size of Angles.
  • Two Congruent Plane Figures: Exercise 1.
  • Two Congruent Plane Figures: Exercise 3.
  • Two Congruent Plane Figures: Exercise4.

My blog:
  1. tulisankahfi.blogspot.com
  2. catatanpelajaransekolah.blogspot.com
  3. catatanpelajaraninggris.blogspot.com

0 Response to "Two congruent plane figures: exercise 2"

← Posting Lebih Baru Posting Lama → Beranda
Langganan: Posting Komentar (Atom)

Entri Populer

  • Soal Geografi Materi Biosfer
    1. Fauna wilayah Indonesia Bagian Barat termasuk fauna tipe.... A. Australis B. Panama C. Ethiopian D. Oriental E. Paleartik 2. Di daratan A...
  • Bentuk-bentuk Morfologi Dasar Laut
    Bentuk dasar laut tak ubahnya seperti bentukan yang ditemukan di darat, seperti dataran rendah dan tinggi, pegunungan, lembah, dan sebagainy...
  • SOAL HOTS GEOGRAFI
    Pembelajaran harus HOTS, soal wajib HOTS dan semuanya terkait HOTS. Guru dan siswa jadi bingung. Sebenarnya, apa, bagaimana, dan manfaat HOT...
  • Kecepatan angin
    Atmosfer ikut berotasi dengan bumi. Molekul-molekul udara mempunyai kecepatan gerak ke arah timur, sesuai dengan arah rotasi bumi. Kecepatan...
  • SMAN 15 MEDAN JUARA OLIMPIADE GEOGRAFI UNIMED TINGKAT SUMUT-ACEH TAHUN 2016
    Bersyukur kepada Allah SWT karena kebahagian siswa/i yang tergabung pada tim Olimpiade Sains SMA Negeri 15 Medan (OS 15) Bidang Geografi sa...
  • Soal Tentang Garis Kontur, Komponen Inderaja, dan Tahapan Kerja SIG
    1.   Diketahui peta kontur dengan skala 1:20.000.  Pertanyaan : Berapakah kontur interval pada peta tersebut? Apabila ada dua garis kontur y...
  • Persebaran Flora di Indonesia
    Mungkin diantara kita masih belum mendapatkan gambaran -seperti apa sih persebaran flora di Indonesia?-. Seorang ahli biologi asal Belanda –...
  • Industri, Orientasi Lokasi, dan Klasifikasinya
    Pengertian Industri  adalah bidang yang menggunakan ketrampilan, dan ketekunan kerja (bahasa Inggris:  industrious ) dan penggunaan alat-ala...
  • Memperbesar dan Memperkecil Peta
    Selain mencari cara menghitung skala peta, biasanya kita juga diminta untuk memperbesar maupun memperkecil suatu peta. Gambaran pada peta bi...
  • Persebaran Fauna di Dunia
    Wilayah persebaran fauna pertama kali diperkenalkan oleh Sclater (1858) dan kemudian dikembangkan oleh Huxley (1868) dan Wallace (1876). Ada...

Arsip Blog

Formulir Kontak

Nama

Email *

Pesan *

Memuat...

Memuat...

Memuat...

Memuat...
Copyright 2014 MATSAMUKA. All Rights Reserved. Template by CB Blogger. Original Theme by Mas Sugeng. Powered by Blogger